
THE VISIT PROBLEM: VISIBILITY GRAPH-BASED SOLUTION t

N . S. V. Rao, S.S. Iyengar
Department of Computer Science

Louisiana State University
Baton Rouge, LA 70803

G. desaussure
Center for Engineering Systems Advanced Research

Oak Ridge National Laboratory
Oak Ridge, TN 37831

ABSTRACT

The visit problem is defined as follows: a point body R is
located at point d o in a finite-sized two-dimensional terrain
populated by a finite number of polygonal obstacles; each obs-
tacle has a finite number of vertices. The R is equipped with a
sensor system capable of detecting all vertices and edges seen
from its present location. A computing device with a finite
storage capability is also housed on R . R is capable of transla-
tional motion. Initially, R is located at a point do, and no ter-
rain model is available to R . R is required to execute a navi-
gation mission which involves visiting a sequence of the desti-
nation points, namely d l , d 2 ; . . , d M , in the specified order.
We present the algorithm LNAV that navigates R from di to
di+,. We then present the algorithm GNAV that executes the
navigational mission. It uses LNAV in traversing in between
successive destination points in the mission, and builds a glo-
bal visibility graph of the terrain by integrating the sensor
information obtained, over a period of time, as R keeps navi-
gating. We also illustrate that, in a general case of executing a
navigation mission, the performance using GNAV is more
efficient than the repeated application of LNAV in terms of
number of scan operations and the distance traversed by R .
Key-words and Phrases: visibility graph, algorithm, learning,
time and storage complexities.

1. INTRODUCTION
The visit problem is defined as follows: Consider a finite-

sized two-dimensional terrain populated by a finite number of
simple stationary polygonal obstacles; each obstacle has a
finite number of vertices. The total number of obstacle vertices
is given by N . We consider a point body R , capable of
translating to a specified destination point in a straight line
path. R takes a finite amount of time to translate through a
finite distance. The R is equipped with a computing device
with a finite storage capability. It is also equipped with a sen-
sor system which detects all edges and vertices that are seen
from the present location of R . Each such process is referred
to as a scan operation.

Initially, the terrain is unexplored or unknown, i.e. no ter-
rain model is available to R . R is initially located at a point dn

and is required to visit a sequence, d , , d Z , ..., dM, of destina-
tion points without colliding with the obstacle polygons. This
sequence, d , , d2 , ... , d M , is called the navigation mission, and
the process of visiting these points is termed as the execution
of the navigation mission. Navigation from di to di+l is called
a traversal, where di is called the source point and di+l is
called the destination point. The R is required to execute the
mission. We assume that d,,d2, ..., dM are in obstacle-free
region. The obstacle polygons are simple and disjoint, hence
there always exists a path for R from a source point to a desti-
nation point of any traversal.

Navigating a body through a terrain of known obstacles
has been solved in many cases. See Lozano perez and Wesley
[4], O'Dunlaing and Yap [6], Reif [lo], and Schwartz and
Sharir [l I] for some of the fundamental approaches. However,
the navigational algorithms for unknown terrains have not been
developed to the same extent. These algorithms can be
classified into two broad categories. The first category, often
referred to by the appellation of non-heuristic algorithms, deals
with precise algorithms whose correctness is guaranteed within
a framework of stated assumptions. The second category deals
with heuristic types of algorithms whose correctness is not
explicitly shown.

We now discuss the first category. The Pledge algorithm
discussed in Abelson and diSessa [11 enables a point robot to
move out of mazes by utilizing a "touch" type of sensing abil-
ity. Lumelsky and Stepanov [SI present two very interesting
algorithms - bug1 and bug2 - that enable a point automaton to
reach a destination point in two-dimensional terrains populated
by simple closed obstacles. The point automaton here uses a
"touch" type of sensor for navigational purposes. These algo-
rithms do not, in general, implement learning in the navigation
process, and as a consequence the navigation paths remain the
same (in terms of computation, sensing, etc.) despite executing
the navigation process over a number of times. In Oommen et
a1 [7], a navigation algorithm that navigates a point robot
amidst convex polygonal obstacles to a specified destination
point is presented. The robot here is equipped with a "touch"
type of sensor and a distance probing sensor. The interesting
feature of the approach of [7] is the implementation of "learn-
ing" by integrating the sensor information into the visibility

-~
? Research Sponsored by Office of Basic Energy Sciences, U.S. Department of Energy under
cmtract number DE-AC05-840R21400 with Manin Marietta Energy Systems.

1650
CH2555-1/88/0000/1650$01.~ 0 1988 IEEE

graph of the terrain (which is the global terrain model). These
algorithms are also theoretically validated. The approaches of
Chatila [Z], Iyengar et al[3], belong to the heuristic category.

Our approach is similar to that of Oommen et al [7] in
terms of the global methodology of incorporating learning. In
terms of the problem formulation, our work is different in the
following ways: (a) the obstacle terrain consists of polygonal
obstacles and is not restricted to contain only convex polygons
(unlike [7]). As a result obstacles such as mazes, traps, etc.
(which are more complicated to deal with than convex obsta-
cles) are included in our set of obstacles. (b) R is equipped
with a "see from distance" type of sensor, such as a range
finder, etc., in place of the combination of a touch and a dis-
tance probe sensor of [7] (we note that the characteristics of the
sensors considerably influence the nature the navigational stra-
tegies).

In terms of the solution methodology our work differs
from that of [7] as follows: In [7] metric based arguments
(similar to those of Lumelsky and Stepanov [5]) are employed
to validate the algorithms. In particular, the convexity of the
obstacles is used as a basis for proving the convergence of the
algorithms. In our approach we use the connectivity of the
visibility graph to prove the correctness of the algorithm. This
approach seems to be new for navigation algorithms in unex-
plored terrains.

At this point some comments are in order about the usage
of learning as an enhancement for navigational algorithms in
unexplored terrains. Here we deal with the learning only as it is
applied to the navigational aspect, and we do not imply the
generic ability to understand and pick new faculties (an ability
that seems to be naturally present in humans). Learning has
been employed in robot navigation in earlier works by Chatila
[2] Iyengar et a1 [3] and Oommen et al [7].

The paper is organized as follows: In section 2, we
present the algorithm LNAV and its analysis. The algorithm
GNAV is discussed in section 3, along with its analysis. An
illustrative example is presented in section 4. In this paper, we
present our theorems without proof and the proofs can be
found in our report [9].
2. NAVIGATION IN UNEXPLORED TERRAINS

In this section, we consider the problem of navigating R
from its present location, at point s , to a specified destination
point g . Both s and g lie in the obstacle-free region.

We first present a few definitions. A point v is seen from
a point p if and only if the line joining p to v is not intercepted
by any obstacle. Note that a point v , seen from a point p , will
be detected by the sensor of R located at p . An obstacle ver-
tex is seen from p if it is seen as a point from p . An obstacle
edge is seen from p if and only if a point on the edge is seen
from p . The seen-part of an edge, from p , is the set of all
points of the edge that are seen from p . The seen-parr of the
terrain, from p , is the union of the all obstacle vertices seen
from p , and all seen-parts of all edges that are seen from p .
The sensor operation performed by R , located at p , precisely

obtains the seen-part of the terrain, from p .
The visibility graph VG is defined as the graph (V , E) ,

where (v I , v 2) ~ E , for v l , v 2 E V , indicates the fact that the
line joining v and v 2 is either (i) not intersected by any obsta-
cle or, (ii) it corresponds to an edge of an obstacle. The visibil-
ity graph of the entire terrain is referred to as the global VG,
where V is the union of the set of all vertices of all grown obs-
tacle polygons, and the set of all source and destination points.
The set V in the visibility graph of [4] contains only the obsta-
cle vertices and in this case the visibility graph is called local
VG. Here the global VG contains additional nodes
corresponding to the source and destination points of the navi-
gational mission.

After each scan, from a vertex v , the adjacency list of v is
computed and stored. From the adjacency list of v , a node s *
nearest to the destination point is selected, and then R moves
to this node. The path to this node is stored on a stack. With
each node stored on the stack, we also store its adjacency list.
The vertices from which a scan is performed are labeled as
visited and are stored in memory. R continues this process of
"scan and move forward" until it either reaches the destination
point or it reaches a node with all its adjacent nodes visited
earlier. If the latter occurs, then R "backtracks"; which
involves accesses to the stack and the computation of the node
to visit next. The stack is repeatedly popped until a node r with
at least one unvisited adiacent node (neighbor) is obtained. We
temporarily store the path popped off the stack. The next visit
point for R is the unvisited neighbor s * of r that is nearest to
the destination point. Then R moves to r (along the path
popped off the stack) and then to s * . The navigation algorithm
is recursively applied from s* . The algorithm is presented in
detail in LNAV.
algorithm LNAV(s ,g)
1. scan and obtain the seen-part, from s , of terrain;
2. obtain adjacency list ifs in global VG;
3. if (g is directly reachable)
4. movetog;
5. else
6.
7.
8.
9.
10. marks as visited;
11.
12.

14. else
15.

obtain the adjacency list L,, of s in the global VG;
if (all nodes of L, are not visited)

push s , and L, onto stack;
compute S * , an unvisited vertex of L, nearest to g ;

compute a shortest path to s * along edges of VG;
move to s along the computed path;

13. L N A V (~ * , ~) ;

repeatedly pop the top of the stack till a node r is
obtained such that L, contains at least one vertex
that was not visited earlier;

16.
17.

compute s * an unvisited vertex in L, nearest to g ;
move back to r along the path on stack and then to s * ;

18. L N A V (~ * , ~) ;
endif;

endif

1651

g

(a) Escaping out of a concavity

(b) Escaping out a maze

Fig. 1. Execution of LNAV - no backtracking.
The backtracking is a very important feature of this algo-

rithm. The execution of algorithm LNAV is illustrated in Fig.
1 , where two traversals are undertaken without backtracking.
In Fig. 2, R starts at s and moves to node 4, where R back-
tracks to node 5 via node 2.

Now we analyze the algorithm LNAV for its correctness
and its performance. We first state a result.

Result 1 181: The local VG is graph connected and every point
in obstacle-free space is seen from some vertex of local VG. 0

It is direct to see that global V G satisfies the same proper-
ties stated above. A close look at the algorithm LNAV reveals
the following property.
Proposition 1: The order in which R visits the new obstacle
vertices (while executing algorithm LNAV from s to g) is
equivalent to performing a depth first search on global V G with
s as a starting node.

Depending on the locations of s and g, R (executing
LNAV) will visit a subset of the vertices of global VG. In the
worst-case, R would visit all the nodes. Now, combining the
above two results we show that the algorithm LNAV correctly
navigates R from the source points to the destination point g .
Theorem 2.1: Algorithm LNAV navigates R from s to g in a
finite amount of time. U

The execution of LNAV by R involves operations such as
scans, movements and computation. The time taken for navi-
gating from s to g is a function of the time taken to perform

these operations. These parameters are estimated in the fol-
lowing theorem.
Theorem 2.2: In executing algorithm LNAV, (i) the number of
scan operations is at most N+1, (ii) the total distance
traversed is at most equal to twice the length of the depthjirst
tree, of global VG, rooted at s . 0

The computational complexity of the algorithm LNAV is
given in the following theorem.
Theorem 2.3: In executing the algorithm LNAV, (i) the storage
required is 0 (N 2) , (ii) Complexity of path planning is 0 (N 3) ,
(iii) complexity ofstack operations is o (~ ' 1 .
3. LEARNED NAVIGATION

In this section we present the algorithm GNAV which
implements a restricted form of "learning". The algorithm
LNAV is modified such that the adjacency lists that are gen-
erated after each scan are stored in a partially-built global V G
called GVG. Note that the GVG contains the visited destina-
tion points of the navigation mission as nodes (along with their
visibility information) in addition to the nodes corresponding
to the obstacle vertices. Let the modified LNAV be called
LNAV1. Now the navigation mission is executed as follows:
For each traversal from di to di+l , a scan is performed from di
and the GVG is augmented with the adjacency information of
di. Then a node d' nearest to di+l is computed. A shortest
path to d * is planned on GVG. Note that di is graph node. R
moves to d* along the edges of GVG. From d* to di+l the
navigation is carried out using LNAV1. The details of algo-
rithm GNAV are given below:

algorithm GNAV(di , d i+ l)
1 . scan and obtain seen-part, from di , of the terrain;
2. augment the visibility graph;
3. if (di+l is directly reachable)
4. move to di+l;
5 . else
6.
7.
8.
9. LNAVl(d* , d i+ l) ;
10. if ((i + l) # M)

compute the d* , the vertex nearest to di+l;
compute the shortest path to d* ;
move to d * on GVG;

1 1 . GNAV(di+l d + 2) ;
endif

endif;

Consider the traversal from di to di+l . The navigation
from di to d * is along edges of GVG, and hence is collision-
free. The navigation from d* to di+l is correctly carried by
LNAVl (theorem 2.1). Hence we have the following theorem.
Theorem 3.1: Algorithm GNAV correctly executes the naviga-
tion mission. 0

We note that the GVG at any stage is dependent on the
exact nature of the navigation mission. The GVG, at any stage,
will be more complete if the destination points are scattered

1652

Fig. 2. Execution of LNAV with backtracking (from 4 to 5
along 2).

around the terrain rather than clustered to a small region.
Since, our learning is "incidental", i.e., the terrain model of a
region is built only in the regions R moves into, we can only
make probabilistic statements about the learning.
Theorem 3.2: The terrain model converges to complete local
VG with probability of one, i f every obstacle vertex and edge
has a non-zero probability of being seen during some scan
operation while executing the navigational course. The terrain
model will be completely built in N +2M scans, then (i) execu-
tion of each traversal takes two scan operations i f N is unk-
nown, no scan operations i f N is known, (ii) the planned path
is optimal from di to d * , i f N unknown, and the entire path is
optimal i f N is known. 0

While executing the algorithm GNAV, the global visibil-
ity graph CVG contains nodes corresponding to the destination
points (at most M in number) of the navigational mission in
addition to the nodes corresponding obstacle vertices (at most
N in number). Hence the number of nodes in the graph used
by GNAV is at most N+M. A straightforward extension of
Theorem 2.2 results in the following theorem.
Theorem 3.3: I n executing the navigation mission, using
GNAV (i) the number of scan operations is at most N +2M, (ii)

the total distance traversed is at most 2C (depth jirst tree

rooted at di).O
The computational complexity of GNAV is estimated in

the following theorem.
Theorem 3.4: In executing the navigation mission, using
GNAV (i) the storage complexity is O((N+M)2) , (ii) the com-
plexity of stack operations is O(MN2), (iii) the complexity of
path planning is 0 ((N + M) 3) . 0
4. EXAMPLE

Let us compare the performance of the algorithm GNAV
over repeated application of algorithm LNAV. We consider
the terrain of Fig. 3. The Fig. 4 through 6 present seven traver-
sals carried out using algorithms GNAV and LNAV. Note that
the global information available to GNAV enabled it to navi-

U

i = l

Fig. 3. Terrain

do (a) Application of LNAV

(b) Application of GNAV
Fig. 4. Navigation from d o lo d , and then io d ,

1653

(a) Application of LNAV

10

8

6

4

2

(a) Application of LNAV

..

(b) Application of GSAV
Fig. 6. Navigation from d , to d6 and then to d, .

gate better compared b LNAV. In Fig. 7 we show the relative
performance of these two algorithms in terms of the number of
scan operations. Notice the decrease in the number of scans
performed by GNAV as R traverses in the terrain. Similar
phenomenon is seen in the number of localized concavities
entered by R in Fig. 8.
5. CONCLUSIONS

In this paper we presented an algorithm to navigate a
point robot through a sequence of destination points amidst
unknown stationary polygonal obstacles in a two dimensional
terrain. The algorithm implements learning in the way of
building a global terrain model by integrating the sensor infor-
mation obtained during the course of navigation. This global
model is used in planning the future navigational paths. This
approach prevert8s the robot from getting into localized
detours, and also results in better navigational course, in an
average case, compared to the algorithms without learning.
The proposed algorithms are implemented in language C on a
simulator for HERMIES-I1 robot running on I B W C .

d 4 L"
(b) Application of GNAV

Fig. 5 . Navigation from d , to d3 to d , and then to d,.

number of scans

12 I

1 1 2 3 4 5 6 7

Fig. 7. Relative performance.
traversal number

1654

- WAV

CNAV _ _ _ -
number of traps
entered by robot

1 2 3 5
traversal number

Fig. 8. relative performance

ACKNOWLEDGEMENTS
We acknowledge the support of C. R. Weisbin of Oak Ridge

National Laboratory. We also acknowledge the support of 0. Man-
ley of the Office of Basic Energy Sciences and the encouragement of
Alex Zucker and F. C. Maienschein.
REFERENCES:

Abelson, H., and A. diSessa, Turtle Geometry, Cambridge,
Ma., MIT Press, 1980.
Chatila, R., Path planning and environment learning in a
mobile robot system, Proc. European Conz Artificial Intelli-
gence, Torsey, France, 1982.
Iyengar, S.S., C.C. Jorgensen, S.V.N. Rao, and C.R. Weisbin,
Robot navigation algorithms using learned spatial graphs,
Robotica, vol. 4, Jan. 1986,93-100.
Lozano-Perez, T. and M. Wesley, An algorithm for planning
collision-free paths for an autonomous vehicle, Commun.

Lumelsky, V.J. and A.A. Stepanov, Dynamic path planning for
a mobile automaton with limited information on the environ-
ment, IEEE Trans. on Automatic Control, vol. AC-31,
no.11, Nov. 1986, 1058-1063.
O’Dunlaing, C. and C.K. Yap, A ”retraction” method for plan-
ning the motion of a disc, J. Algorithms, vd.6, 1985, 104-1 11.
Oommen, J.B., S.S. Iyengar, N.S.V. Rao, and R.L. Kashyap,
Robot navigation in unknown terrains using learned visibility
graphs. Part I: The disjoint convex obstacle case, IEEE J.
Robotics and Automation, Vol. RA-12, 1987.
Rao, N.S.V., S.S. Iyengar, J.B. Oommen, and R.L. Kashyap,
Terrain acquisition by a point robot amidst polyhedral obsta-
cles, Proc. 3rd IEEE Conf. on AI Appl., Orlando, Fl. Feb 1987

Rao, N.S.V., S.S. Iyengar, G. desauaaure, The visit problem:
visibility graph based approach, Tech. Rep #ORNLRM-, Oak
Ridge National Laboratory, Oak Ridge (under preparation).
Reif, J. , Complexity of mover’s problems and generalizations,
Proc. 20thAnn. Symp. on Found. Comput. Sci., 1979,421-427.

ACM, vol. 22, 1979,560-570.

pp. 170-175.

[111. Schwartz, J.T. and M. Sharir, On the piano movers’ problem I:
The special case of a rigid polygonal body moving amidst
polygonal barriers, Commun. Pure and Appl. Math., vol. 36,
1983,345-398.

1655

